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A mathematical model has been formulated of a bed of equal-diameter spheres randomly dumped 
on a plane surface. Based on this model relationships have been derived for the area porosity 
of the bed as a function of the distance from the supporting plane. The model contains three 
parameters with well defined physical meaning and its asymptote for infinite distance from the 
supporting plane satisfies criteria typical for random beds of spheres. 

Random systems of spheres, or more generally particles, have been subject of interest 
of several scientific disciplines such as e.g. statistical thermodynamics, research of the 
structure of gels, suspensions or aerosols, chemical engineering, chemical technology, 
etc. 

Random beds of spheres serve as models of non-crystalline structure and molecular aggregates. 
A widely used method of of the study the structure of random packings of spheres have been 
computer simulations making use of e.g. the Bernal model with various functions describing the 
interatomic potential. The computer then searches for those configurations minimizing the po­
tential energy of the system1

. 

Another computer-aided approach consists of the simulation of the process of slow settling 
of a thin system of spheres. This type of computer simulation, which is essentially a statistical­
geometrical approach (the spheres must not overlap and must be supported), has been used, 
for instance, by Tory and coworkers2 to study the probability density distribution function 
of porosity in a spherical volume. The results of these authors of the distribution of nearest 
neighbours yield as most probable six points of contact. They also found a significant anisotropy, 
i.e. differences in results valid for a horizontal and vertical plane, appearing due to the effect 
of gravity forces. 

A review of the extensive literature on the structure of a packing of spheres have been presented 
by Haughey and and Beveridge3

• 

The properties of random beds of spheres, particles of irregular shape and mixture of such 
particles have been studied theoretically and experimentally by Debbas and Rumpf4

. Based 
on statistical properties of the packing these authors regard a given bed of equal-diameter 
spheres as random provided it satisfies the following criteria: 1) The area porosity in all cross 
sections is identical; 2) The area porosity equals the volume porosity of the whole bed; 3) The 
mean area of discs appearing on a given plane cut through the layer equals rrd2 /6; 4) The fre­
quency function of the diameters of discs, tP, appearing on a given plane cut through the bed 
is given by z(tP) = tP /(d(d2 - tP2)1 /2); 5) The cummulative distribution function of diameters 
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of these discs is Z(CP) = 1 - (d2 - cP2 )1 / 2. The experimental study of these authors has shown 
the minimum volume porosity satisfying still the criteria of randomnes to be about 0'35. Below 
this limit the beds were loosing their random character judging from the viewpoint of the above 
listed criteria. A tendency to regularities, or the deviations from the random properties exhibit 
packings subjected to vibrations. The most compact packing exhibited porosity in certain region 
as low as 0' 316; the minimum porosity 0'26, however, could not be reached owing to the effects 
of the walls and flaws of the shape of the spheres. 

A statistical-geometrical argument has been used by Gotoh and Finneys to construct a most 
probable tetrahedron and to calculate the overall packing density, taking the latter to be a system 
of tetrahedron aggregates of spheres. 

Scott6 observed experimentally that porosity of packings in solid containers ranges between 
two well-defined limits. In his measurements the results were corrected by extrapolation 
to a vessel of infinite diameter and length. Mild vibrations resulted in the so-called "dense random 
packings" while filling the vessel by sliding the packing over an inclined plane lead to "loose 
random packings". The extrapolated porosities for these two random packings amounted to 
O' 36 (6) and 0·40 (9). This phenomenon was further studied by Bernal and Mason 7 . 

A distribution function for a randomly distributed set of spheres as well as for a mixture 
of spheres was investigated by Herczinski8 . The minimum porosity of a two-component mixture 
depends generally on the diameter of both types of spheres and their relative concentration. 
Numerical experiments have shown that for the sphere diameter ratio between 1 and 2 and the 
relative concentration between 0,) and 0·9 the minimum porosity changes little. 

Zagrafskaya and coworkers9 have applied a globular model for a theoretical and experimental 
study of colloid systems. They start from random partly organized systems composed of indi­
vidual spheres and chains of spheres. The probability density distribution function of the number 
of contacts has the normal distribution with the mean 5·9 for individual spheres; after vibrations 
this mean increases to 7·1 . The experimental data of these authors furnish the following correla­
tion between the mean number of contacts, n, and the porosity of the bed in the form n = 2·62/e. 
These authors worked out also a correlation for the mean pore radius within the bed, r P' in the 
form: rp /r = 0'62e/(1 - e), valid in the interval 4 ~ n ~ 10. . 

Packings of spheres, or particles of other shapes, formed by dumping into a container 
exhibit deviations from random configuration in the proximity of container walls. This pheno­
menon has been studied experimentally in a number of papers10 - 13 . Most of these papers 
deal with the effect of cylindrical walls and the course of porosity near such walls. The significance 
of such studies rests in the effects on the flows of both gases and liquids such as these exist in pac­
ked-bed type separation units, catalytic reactors, gas-solid reactors, heat recuperators, etc. 
The peculiarities in the course of porosity in the proximity of the walls results in anomalous gas 
flows I 4 in this region, by-passing and in case of trickle beds chanelling and wall flow forma­
tion lS

. 

Analogously there exists the effect of horizontal plane surfaces confining the packing such as 
e.g. supporting grids, etc. This phenomenon, however, has been so far little studied. Indirectly, 
though its existence has been recognized in the experimental techniques of the study of radial 
porosity profiles when the horizontal sections adhering directly to the bottom and the top are 
eliminated. Experimentally the course of porosity in the vertical direction in the proximity of a pla­
ne surface has been studied by Benenati and Brosilow11 . Their results revealed a course similar 
to radial profiles with characteristic oscillations reaching 4·5 sphere diameter deep into the 
packing. 

In this paper a mathematical model has been formulated enabling description 
of the pa<;king of equal-diameter spheres confined by a plane. The parameters of this 
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model relate to well-defined physical quantities characterizing the bed and at infinite 
distance from the plane the model satisfies the criteria for a random bed set by 
Debbas and Rumpf4. 

THEORETICAL 

Already a mere visual observation of packing of equal-diameter spheres resting on 
a flat support through the wall of a glass container reveals that the influence of the 
pad reaches several sphere diameters deep into the bed. In a bed of equal-diameter 
sphere the first "layer" has all spheres with their centers one sphere radius away 
from the supporting plane. The obviousness of the arrangement of the spheres into 
"layers" grows weaker with increasing distance from the plane untill it completely 
disappears in the random structure of the bed. 

It is assumed that the packing may be divided along its whole height into horizontal 
layers parallel to the supporting plane while each layer contains the same number of 
spheres, N. The situation is schematically shown in Fig. 1, where the shadowed 
area depicts the supporting pad. The total thickness of the first layer is (1' + c5) and 
may be divided by a plane designated by the index i = 1 at a distance r from the plane 
into two parts. The plane i = 1 is the geometrical locus of all centers of all N spheres 
belonging into the first layer; some of these spheres are shown in Fig. 1 and designated 
by capital letters A, Band C. Depending on the compactness of the bed these spheres 
may either contact (e.g. spheres A and B) or be mutually separated as e.g. spheres B 
and C. 

Immediately above the first layer there are additional layers, each 2c5 thick, divided 
by horizontal plane referred to by the indices i = 2, 3, 4, ... , into two, this time equal, 
parts. These planes are thus planes of symmetry of corresponding layers and, in 
addition, geometrical loci of most probable position of centers of N spheres belonging 
to each layer. The probability density distribution function of the centers of spheres 
is symmetrical with respect to the planes i and is shown below in Eq. (7). Some of the 

FIG.! 

Sketch of a Random Bed of Spheres Resting 
on a Plane Surface 

Shaded area represents supporting plane 
surface. 
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spheres with the most probable position of center in layers i = 2, 3, 4 are shown in 
Fig. 1 by letters D, E and F. The limits between two neighbouring layers are horizon­
tal planes at the position depending on the index i: (r + (2i - 3) 0) (Excepting i = 1) 
and (r + (2i - 1) 0). Maximum spacing of centers of two spheres belonging to the 
same layer is thus 20. 

The distribution function of the probability density for the position of centers 
of the spheres in the i-th layer fi(Xi), where Xi is the coordinate of the distance of 
center of the sphere from the plane i, shall be expressed in the form 

In this formula hi designates the distance of the plane of maximum probable position 
of centers of spheres in layer i from the plane i = 1. 

The function fi(xi) = fi satisfies the differential equation 

(2) 

typical for random, diffusional processes whose solution on an infinite interval gives 
the normal distribution function . 

The distribution function (1) is valid on the interval -0 ~ Xi = 0 and satisfies 
the condition of symmetry with respect to the plane i 

(3) 

Further we have that 

fo f. dx i = 1 
1 • 

-0 

( 4) 

On expressing the quantity hi by means of the characteristic scale of the layer 

hi = (i - 1)20 (5) 

and the quantity D, characterizing the scatter of the spheres about the plane i, in 
terms of the characteristic radius of the spheres 

D = 112r (6) 

we obtain 

fl(xi) = 1/(2<5) + (l/<5) L cos (nnxi/o) exp [-(nn)2 411(i - l)/(o/r)] . (7) 
n 
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From additional properties of this function there follows that for i = 1 the Dirac 
function results with the non-zero value at the point Xl = 0, which , indeed, is the 
required property of the first layer. 

The dimensionless variance of position of centers of spheres in a general layer is 
given by: 

f
+S 

(J2 = _!JXi) (xi/bY dx i = 

= (1/2) + L 4( -1)" exp [ -(1tn)2 41](i - 1)/(blr)]J(1t11)2 (8) 

and in the special case of i = 1 we obtain (J2 = ° while for I ~ 00 then (J2 = 1/3. 

In the limiting case of infinite distance from the supporting plane the distribution 
of centers of the spheres is given by 

lim Ii = 1/(2b) . (9) 
i- co 

This result is identical with the assumption (4) of Debbas and Rumpf4 concerning 
the properties of a random packing of spheres. 

If the packing of spheres is confined in the radial direction by a cylindrical surface 
of radius R, then the quantity (1 - 8) in a general plane parallel to the supporting 
plane equals the mean square radius of discs appearing after hypothetical sectioning of 
the bed by this plane, multiplied by the dimensionless group N(rJR)2. 

Consider now a plane alpha parallel to the plane (i) at a distance x~ in the positive 
direction (i.e. away from the support). Provided the position of alpha satisfies the 
inequality 

then alpha intersects only spheres belonging to the layers (i) and (i + 1). The dimen­
sionless mean square radius of discs on sectioned spheres belonging to the layer (i) 
is then given by the integral 

li(x~) = fS li(Xi) [1 - ((x~ - xi)lr)2] dxi . 
Xt O - r 

(10) 

The mean square radius of discs on spheres of layer (i + 1) sectioned by the plane 
alpha is 

(1 I) 
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After transformation 

xb + 1 = x~ - 20 . (12) 

Eq. (11) leads to 

(13) 

where X~+l designates position of alpha with respect to the plane (i + 1). 
In case that the position of the plane alpha satisfies the inequality 

o ~ x~ ~ r - 0 

alpha sections spheres belonging to the layers (i - 1), (i), (i + 1). The dimensionless 
square radius of the discs on sectioned spheres belonging to (i) is 

[i(xb) = fO P(Xi) [1 - ((x~ - xi)/r)2] dx i . 

-0 

(14) 

Similarly for the discs belonging to the layer (i + 1) 

(I 5) 

Finally the mean square radius of discs belonging to the layer (i - 1) is give~y 

li-l(X~) = fO P- 1(X i - 1) [1 - ((x~ + 20 - xi - 1)/r)2] dXi-l. (16) 
2o+xo i -r 

By transformation (12) the integral (15) yields 

li+l(X~+l) = fxoi +l+rp+l(xi+l) [1 _ ((X~+l - x i+1)/r)2] dXi+1 (17) 
-0 

and by transformation 

X~-l = x~ + 20 (18) 

integral (16) changes to 
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After these transformations all integrals take generally the form 

(20) 

where 

m = (i - 1), i, (i + 1). 

For those cases, when the plane alpha appears below the plane (i), i.e. if x~ are nega­
tive, corresponding integral can be written directly. For the region 

-b ~ x~ ~ b - r 

the contribution of the layer (i) is integrated in the limits < -b; r + x~ ) and the con­
tribution of the layer (i - 1) in the limits <X~-l - r; b) . 

In region 

b - r ~ x~ ~ 0 

spheres of three layers contribute. The contribution of the layer (i) is obtained after 
integration following Eq. (20) in the limits < - b; b) , the contribution of the layer 
(i - 1) after integration in the limits <X~-l - r; b) and the contribution of the 
layer (i + 1) in the limits < -b; X~+l + r ) . 

On substituting appropriate distribution functions, integration and on reverse 
transformation using Eqs (12) and (IS) all integrals relate to the common frame of 
reference referred to the plane (i). On designating the dimensionless mean square 
radius of discs on all sectioned spheres by I, the area porosity may be expressed by 

e = 1 - N(rjR)2 I . (21) 

Introducing for brevity a new dimensionless coordinate 

x = x~jb (22) 

the dimensionless mean square radius of discs on all spheres sectioned by plane at 
a position x satisfying 

1 - (rjb) ~ x ~ (rjb) - 1 (23) 

may be expressed by 

I = Ii(x) + I i+I(X) + Ii-I(X) = 

= 2rj(3b) - 4(bjr)2 L exp (-P(n, i))( -1Yj(1tn)2 -
n 
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- 2(0/r) 'L exp (-P(n, i + 1)) cos (nn(x + (r/o)))/(nn)2 -
n 

- 2(0/r)2 (x - 1) I exp (-P(n, i + 1)) (-I)n/(nn)2 + 

+ 2(0/r)2 'L exp (-P(n, i + 1)) sin (nn(x + (r/o)))/(nn)3 + 

+ 2(0/r)2 (x + 1) 'L exp (-P(n , i - 1))( -1)n/(nn)2 -

- 2(0/r)'Lexp(-P(n, i - 1)) cos (nn(x - (r/o)))/(nn)2-
n 

- 2(0/r)2Iexp(-P(n, i - 1)) sin (nn(x - (r/o)))/(nn)3 , (24) 
n 

pen, i + m) = (nn)2 1](i - 1 + m) (r/o) for m = -1 , 0, 1 . (25) 

(r/o) - 1 ~ x ~ 1 

-1 ~ x ~ 1 - (r/o) 

(26) 

(27) 

the expression for I takes the following form 

I = Ji(x) + Ji±l(X) = 

= 2rl(30) ± 2(0/r)2 (x ± 1) 'L exp (-P(n, i)) (-I)n/(nn)2 -

- 2(0/r) I exp (-P(n , i)) cos (nn(x ± (r/o)))/(nnY + 
n 

+ 2(0/r)2 'L exp (-P(n , i)) sin (nn(x + (r/o)))/(nn)3 + 

+ 2(0/rY (x + 1) I exp (-P(n , i ± 1))( -1)n/(nn)2 -

- 2(0/1") I exp (-P(n, i ± 1)) cos (nn(x ± (r/o)))/(nn)2 ± 

. ~-

± 2(0/1")2 'L exp (-P(n, i ± 1)) sin (nn(x ± (l"/o)))/(nn)3 , (28) 

where in the case of doubble signs the upper holds for the case of inequality (26), 
the lower for the case when the inequality (27) applies. 

The expressions (24), (28) may be regarded as generally valid for i > 2. For the 
layer i = 2, however, it holds only in region x ;:;; (r/o) - 1. In their remaining part 
of the layer i = 2 and in the whole layer i = 1 there are terms in the expressions (24) 
and (28) relating to the nonexisting layer i = 0. This drawback, however, can be 
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circumvented formally by introducing the layer i = 0 with a zero probability density 
throughout the layer 

(29) 

For the purpose of Eqs (24) and (28) we shall extend the definition (25) by 

P(n, 0) = 00. (30) 

For practical calculations of the porosity profiles in regions influenced by the 
spheres of the first layer (i = 1) it is though preferable to derive special relations in 
which we use for i = 1 directly the Dirac Function 

fl(x1) = 00 for Xl = 0 

o for Xl # 0 (31) 

instead of its harmonic expansion (7). This improves the rate of convergence of the 
appropriate series at the costs, of course, of more complicated computational 
algorithm. 

The expression valid in region immediately adhering to the supporting plane is 

I = 1 - ((jJr)2 x2, for -(rJ(j);£ x ;£ 1 - (rJ(j) . (32) 

DISCUSSION 

The derived expression written in Eqs (21), (25) and (28) may be used to compute 
the profiles of area porosity in a random packing of equal-diameter spheres confined 
by a plane surface. The model contains a total of three parameters. The dimensionless 
damping coefficient '1; dimensionless group N(rJR)2 and the dimensionless half­
-thickness of the model layer ((j/r). The effect of these parameters on the shape 
of the profile is demonstrated in Fig. 2. 

The parameter '1 characterizes the rate of damping of the visibly layered structure 
and the transition to the random structure. Packings with corresponding high value 
of the damping coefficient exhibit small "penetration depth" of the porosity oscilla­
tions. Graphically the differences at various dampings are demonstrated under other­
wise identical conditions by curves 1 and 2 in Fig. 2. For higher of the selected values 
of the damping coefficient (curve 1) the depth of penetration of the oscillations 
amount to about 5 times the sphere diameter. 

In the limit R -. 00, and in practice for sufficiently large values of the ratio R/r 
when the packing is free of the effect of the container walls, the dimensionless group 
N(rJR)2 takes a nonzero value independent of R. As follows from a geometrical argu-

Collection Czechoslov. Chern. Commun. [Vol. 441 [19791 



838 Stanek, Eckert: 

ment the group is maximum for packings with maximum compactness. For a tri­
angular configuration of spheres N(rIR)2 = nl(2.J3) ;:;;; 0·907. On the contrary, 
the loosest possible configuration is with the spheres in the corners of a triangle with 
the fourth in the center missing. Then: N(rIR)2 = nl9 ;:;;; 0·349. As it may be expected 
that the scatter of centers of the spheres in the second layer is small, the dimensionless 
group N(rIR)2 permitts the porosity of the first minimum to be determined with 
sufficient accuracy from 

tmin == 1 - N(rIR)2 . (33) 

On the contrary, the expressions in Eqs (24) and (28) converge in the limit i -+ 00 

to the same value. In a sufficient distance from the confining plane, in region free 
of the oscillations the porosity, too, thus takes values given by 

t oo = 1 - N(rIR)2 (213) (rl(j) . (34) 

Eq. (21) may be rearranged then to give 

t = 1 - (1 - too) (3/2) (jlr) I • (35) 

where too may be taken as a new parameter replacing N(rIR)2. Graphically the effect 
of the dimensionless group N(rIR)2 is illustrated in Fig. 2 by curves 3 and 4 under 
otherwise identical conditions. A greater number of spheres in the layer, N, in case 
of the curve 4 thus becomes manifelit through the overall shift toward lower values of 
porosity while the curves 3 and 4 intersect only at the origin. 

10 

FIG. 2 
o 

"~ e 5 

6 

o 

Porosity Profiles Predicted by the Stratified 
Model 

Curve: 171 = 0'01; N(rIR)2 = 0'787; (olr) = 
= 0·88; 2 0,005; 0'787; 0'88; 30'005; 0'721; 
0'83; 4 0'003; 0·787; 0'85; 5 0'005; 0·787; 
0'90; 60'005; 0'787; 0'85. 

o 4 8 
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Physical meaning of the parameter (o/r) is obvious: it is the half wave-length of the 
oscillations. Theoretically the lowest value of this parameter is obtained for the tri­
angular arrangement of the spheres. Then (o/r) = ')2/2 ~ 0·707. This configuration, 
however, is not random. The effect of (o/r) is illustrated graphically in Fig. 2 by 
curves 5 and 6. Lower value of (o/r) caused not only a different wave-length of the 
oscillations but also lower porosities in phase-corresponding positions. 

The relations formulated on the basis of the proposed model are applicable to 
packings of approximately spherical compact particles of equal nominal size pro­
vided the equivalent diameter of the sphere is used. 

The model may be applied also to porosity profiles in the proximity of cylindrical 
walls provided the ratio (r/R) is small. 

LIST OF SYMBOLS 

d diameter of spheres forming the packing 
li(Xi), Ii probability density distribution function for the position of centers of spheres 
hi distance of plane (i) from plane i = 1 
I mean square radius of all discs on sectioned spheres as a multiple of r2 

I i(.), Ii + 1 0, 1i -1 (.) mean square radius of discs on sectioned spheres belonging to layer shown 
by the superscript expressed in terms of r2 

Ii mean number of contact points 
n summation index 
N number of spheres in a single layer of the stratified model 
Pen, .) quantity defined by Eqs (27) and (31) 

radius of spheres forming the packing 
R radius of cylinder containing the packing 
xi coordinate of distance of centers of spheres within the layer with respect to plane 

(I) 
x~, x~ + I, x! - 1 coordinates of position of a given plane with respect to plane shown by super­

scripts 
x dimensionless coordinate of position of an arbitrary plane with respect to plane 

(i) 
y distance from confining plane measured in multiples of d 
t5 half-thickness of model layer 
f/J radius of discs appearing on sectioned spheres 
" damping coefficient in the stratified model 

area porosity (function of position) 
Emin' E"" porosity of the first minimum and porosity in region free of the oscillations 
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